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Research Motivation and Contributions
• Reinforcement Learning (RL) enables agents to learn control strategies from interaction with
their environment

• The CartPole task is a classical RL benchmark used to evaluate control algorithms

• In real world cyber-physical systems, factors like sensor noise and reward design can
significantly affect learning stability and performance

• Evaluate Q-learning’s behavior and policy stability under varying observation noise and different
reward function

• Contributions:
• Application of a Q-learning algorithm to CartPole under noisy observation inputs
• Comparison of a standard reward function with a cosine-based reward function shaped by the pole angle
• Evaluation of convergence episodes, pole angle statistics, and performance variance across noise levels

• Goal of improving understanding of how noise and reward design affect reinforcement learning
for robust cyber-physical control



Related Work
• Early Q-learning applications proved effective in robotics and control problems

• The ε-greey policy helps balance exploration and exploitation during learning

• Variants such as Efficient Q-Learning and Deep Q-Networks (DQN) improved scalability and
performance

• Recent research emphasizes robustness under noise and uncertainty, especially for safety-critical
systems.
• Krish et al. analyzed observation noise effects in neural network controllers for systems like CartPole and

LunarLander

• Nazrul applied RL to optimize sampling frequency in cloud-based control systems for better efficiency
and performance.

•This study also introduces SARSA as a baseline comparison—unlike Q-learning (off-policy),
SARSA learns the value of the current policy (on-policy).



Q-Learning Overview
• Q-Leaning: Model-free RL algorithm that estimates the optimal action-value function Q(s, a)

• Update rule:
•

• Key parameters:
• α: learning rate, controls update speed

• γ: discount factor, weights future vs immediate rewards

• ε: exploration probability in ε-greedy policy

• Learns through iterative exploration and exploitation, improving policy based on accumulated
experience

• Particularly suited for discrete state and action spaces such as CartPole



• The CartPole problem models an inverted pendulum mounted on a moveable cart

• Goal: Keep the pole balanced upright by moving cart left or right

• Observation vector:
• Cart position x

• Cart velocity v

• Pole angle θ

• Pole angular velocity ω

• Actions:
• 0 = Push cart left

• 1 = Push cart right

• Episode ends when poles falls beyond a defined threshold or cart moves out of bounds

• Maximum episode reward of 500 indicates full balance or convergence

CartPole Environment Description



Observation Noise Modeling
• Real-world sensors produce uncertain or inaccurate readings, this is simulated by additive
Gaussian noise

• Formula:
•

• Tested noise levels: 0.0 (none), 0.01, 0.05, 0.1

• Each observation receives noise proportional to its range

• add here?

• Noise is applied before state discretization, potentially causing incorrect state classification or
unstable learning transitions



State Discretization and Representation
• Q-learning requires a finite state space; thus, continuous observations are binned:

• Cart position: 8 bins with range of [-4.8, 4.8]

• Cart velocity: 8 bins with range of [-5.0, 5.0]

• Pole angle: 20 bins with range of [-0.418, 0.418] radians

• Pole angular velocity: 20 bins with range of [-10.0, 10.0]

• Each unique combination defines a state index in the Q-table

• Tradeoff:
• More bins: increases state precision but at the cost of increased computation

• Fewer bins: reduced computation but less detailed state representation

• Observation noise can cause transitions between neighboring bins, introducing non-determinism
into state transitions



Reward Functions
• Default reward: +1 per step while balanced

• Simple heuristic of long survival is better

• Encourages maximizing episode duration

• Lacks explicit feedback for pole angle deviation

• Cosine-based reward: r = cos(θ)
• Rewards upright pole (max = 1 at θ = 0)

• Penalized deviations

• Encourages smoother, stable control behavior rather than just lasting longer



Experimental Setup
• Training setup:

• 10,000 episodes, each capped at 500

• Q-learning Hyperparameters:
• α = 0.1 (learning rate)

• γ = 0.95 (discount factor)

• ε decays from 1.0 to 0.001

• Metrics recorded per episode
• Total reward

• Mean and variance of pole angle of each episode

• Baseline: SARSA algorithm for on-policy comparison trained under same settings



Q-Learning Results and Analysis
•Bar plot:

• Convergence = reaching a total reward of 500

• Shows when the training converges, does not
converge if 10,000 episodes reached

• Box plot:
• Default reward effected by noise significantly

• Cosine reward better variance and fewer outliers

• Observation noise disrupts Q-learning
performance under the default reward

• Cosine-based reward promotes robust, consistent
control by penalizing large pole angles



Q-Leaning Pole Angle Mean and Variance



SARSA Comparison
• SARSA shows similar overall patterns to Q-learning

• Convergence improved under cosine reward; stability worsened with higher noise

• Shows that a good reward choice positively affects stability under noise



SARSA Pole Angle Mean and Variance



Conclusion and Future Work
• Observation noise significantly hinders learning under standard rewards

• Cosine-based reward improves robustness, convergence, and pole stability

• SARSA results show similar reward patterns

• Showing reward design is crucial for deploying RL in noisy, real-world systems

• Future directions:
• Apply framework to physical hardware with real sensors for testing

• Combine with noise filtering or adaptive learning strategies

• Extend to Deep Q-Learning for continuous and scalable tasks

•This work contributes to robust RL for cyber-physical systems.


